251 research outputs found

    Characterization of the material response in the granular ratcheting

    Get PDF
    The existence of a very special ratcheting regime has recently been reported in a granular packing subjected to cyclic loading \cite{alonso04}. In this state, the system accumulates a small permanent deformation after each cycle. After a short transient regime, the value of this permanent strain accumulation becomes independent on the number of cycles. We show that a characterization of the material response in this peculiar state is possible in terms of three simple macroscopic variables. They are defined that, they can be easily measured both in the experiments and in the simulations. We have carried out a thorough investigation of the micro- and macro-mechanical factors affecting these variables, by means of Molecular Dynamics simulations of a polydisperse disk packing, as a simple model system for granular material. Biaxial test boundary conditions with a periodically cycling load were implemented. The effect on the plastic response of the confining pressure, the deviatoric stress and the number of cycles has been investigated. The stiffness of the contacts and friction has been shown to play an important role in the overall response of the system. Specially elucidating is the influence of the particular hysteretical behavior in the stress-strain space on the accumulation of permanent strain and the energy dissipation.Comment: 13 pages, 20 figures. Submitted to PR

    Comparison between a supercontinuum source and a titanium sapphire laser in achieving ultra-high resolution spectral domain optical coherence tomography (SD-OCT)

    Get PDF
    Corneal B-scan images and signal-to-noise ratio measurements using ultra-high resolution Spectral Domain Optical Coherence Tomography (SD-OCT) are reported. A comparison of results is obtained using a Ti:Sa laser and a supercontinuum optical source, is performed. Beside some differences in the SNR, the images are strikingly similar

    Direct observation of nuclear reorganization driven by ultrafast spin transitions

    No full text
    One of the most basic molecular photophysical processes is that of spin transitions and intersystem crossing between excited states surfaces. The change in spin states affects the spatial distribution of electron density through the spin orbit coupling interaction. The subsequent nuclear reorganization reports on the full extent of the spin induced change in electron distribution, which can be treated similarly to intramolecular charge transfer with effective reaction coordinates depicting the spin transition. Here, single-crystal [FeII(bpy)3] (PF6)2, a prototypical system for spin crossover (SCO) dynamics, is studied using ultrafast electron diffraction in the single-photon excitation regime. The photoinduced SCO dynamics are resolved, revealing two distinct processes with a (450 ± 20)-fs fast component and a (2.4 ± 0.4)-ps slow component. Using principal component analysis, we uncover the key structural modes, ultrafast Fe–N bond elongations coupled with ligand motions, that define the effective reaction coordinate to fully capture the relevant molecular reorganization

    Comparison between a supercontinuum source and a titanium sapphire laser in achieving ultra-high resolution spectral domain optical coherence tomography (SD-OCT)

    Get PDF
    Corneal B-scan images and signal-to-noise ratio measurements using ultra-high resolution Spectral Domain Optical Coherence Tomography (SD-OCT) are reported. A comparison of results is obtained using a Ti:Sa laser and a supercontinuum optical source, is performed. Beside some differences in the SNR, the images are strikingly similar

    The HARE chip for efficient time-resolved serial synchrotron crystallography

    No full text
    Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided

    Calculating rutting of some thin flexible pavements from repeated load triaxial test data

    Get PDF
    This paper describes parts of a Nordic pavement performance prediction model study (at the project level of the NordFoU project) where a material performance model, developed at VTT research centre in Finland, has been selected as a mean of calculating the permanently accumulated (plastic) deformation (i.e. rutting) of unbound granular materials (UGMs) in flexible pavements subjected to trafficking. The paper aims to assess the suitability of this VTT model application to Swedish roads comprising thin asphalt layers over a thick UGM base. To achieve this, the VTT model has been used to calculate the deformations of two tested road sections in Sweden. These calculations have been compared with another permanent deformation model for UGM (the Gidel model) and with rutting measurements from trafficked pavements. It is shown from this study that the applied rutting prediction method with VTT model is capable of predicting the development of rutting depth despite some overestimations

    Intraligand charge transfer enables visible-light-mediated nickel-catalyzed cross-coupling reactions

    Get PDF
    We demonstrate that several visible-light mediated carbon–heteroatom cross-couplings can be carried out using a photoactive NiII precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups (Ni(Czbpy)Cl2). The activation of this precatalyst towards cross-couplings follows a hitherto undisclosed mechanism that is different from previously reported light-responsive nickel complexes that were reported to undergo metal-to-ligand charge transfer. Theoretic and spectroscopic investigations revealed that irradiation of Ni(Czbpy)Cl2 with visible-light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross-couplings. The heterogeneous catalyst shows stable performance in a packed-bed flow reactor during a week of continuous operation

    Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures

    Get PDF
    The aim of this paper is to propose a fractional viscoelastic and viscoplastic model of asphalt mixtures using experimental data of several tests such as creep and creep recovery performed at different temperatures and at different stress levels. From a best fitting procedure it is shown that both the creep one and recovery curve follow a power law model. It is shown that the suitable model for asphalt mixtures is a dashpot and a fractional element arranged in series. The proposed model is also available outside of the linear domain but in this case the parameters of the model depend on the stress level

    Intraligand Charge Transfer Enables Visible Light Mediated Nickel Catalyzed Cross Coupling Reactions

    Get PDF
    We demonstrate that several visible light mediated carbon heteroatom cross coupling reactions can be carriedout using a photoactive Ni II precatalyst that forms in situ from a nickel salt and a bipyridine ligand decorated with two carbazole groups Ni Czbpy Cl2 . The activation of this precatalyst towards cross coupling reactions follows a hitherto undisclosed mechanism that is different from previously reported light responsive nickel complexes that undergo metal to ligand charge transfer. Theoretical and spectroscopic investigations revealed that irradiation of Ni Czbpy Cl2 with visible light causes an initial intraligand charge transfer event that triggers productive catalysis. Ligand polymerization affords a porous, recyclable organic polymer for heterogeneous nickel catalysis of cross coupling reactions. The heterogeneous catalyst shows stable performance in a packed bed flow reactor during a week of continuous operatio
    • …
    corecore